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In order to evaluate the effectiveness of curricular or instructional innovations, researchers often attempt to measure
change in students’ conceptual understanding of the target subject matter. The measurement of change is therefore a
critical endeavor. Often, this is accomplished through pre–post testing using an assessment such as a concept inventory,
and aggregate test scores are compared from pre to post-test in order to characterize gains. These comparisons of raw
or normalized scores are most often made under the assumptions of Classical Test Theory (CTT). This study argues that
measuring change at the item level (rather than the person level) on the Force and Motion Conceptual Evaluation
(FMCE) can provide a more detailed insight into the observed change in students’ Newtonian thinking. Further, such
an approach is more warranted under the assumptions of Item Response Theory (IRT). In comparing item-level
measures of change under CTT and IRT measurement models, it was found that the inferences drawn from each analysis
are similar, but those derived from IRT modeling stand on a stronger foundation statistically. Second, the IRT approach
leads to analyzing common item groupings which provide further information about change at the item and topic level.

The measurement of change is necessary for evaluating
the effectiveness of instructional innovations in educa-
tional contexts. Without measures of change in students’
conceptual understanding, we lack strong foundations for
making inferences about existing and reform-oriented
instructional strategies and curricula. Although measures
alone are not sufficient for making these inferences, they
are a necessary part of such research. However, measure-
ment itself is difficult. It is part art and part science. There
is no single test score that can unequivocally tell us every-
thing we need to know about students’ conceptual under-
standing. Moreover, attempting to measure change in
conceptual understanding presents its own problems. Edu-
cational researchers have been tackling these problems for
years (cf. Cronbach & Furby, 1970; Willett, 1988–89), and
lively discussions are still taking place regarding the mea-
surement of change. Challenging as it is, measurement of
change must be undertaken at all levels of instruction and
across all subjects. In our current educational culture of
accountability it is important for us to attempt to measure
change in students’ conceptual understanding.

In science instruction, concept inventories are often
administered to students pre- and post-instruction in order
to characterize change in conceptual understanding. The
Force and Motion Conceptual Evaluation (FMCE;
Thornton & Sokoloff, 1998) is one such concept inven-
tory. It is often used in introductory physics courses to
evaluate students’ ability to think in a Newtonian fashion.
The pre/post administration of this and other concept tests,

such as the Force Concept Inventory (FCI) (Hestenes,
Wells, & Swackhammer, 1992), is used in physics courses
in order to provide evidence for making inferences about
changes in students’ ability to think in Newtonian terms.
These measured changes are then taken to be indicators of
course efficacy. The physics education research (PER)
community has been using these types of assessments for
a number of years (e.g., Bonham, Deardorff, & Beichner,
2003; Finkelstein & Pollock, 2005; Meltzer, 2002;
Pollock, 2004; Smith & Wittmann, 2007; Van Domelen &
Van Heuvelen, 2002). Assessment work by PER research-
ers has provided us with a wealth of data to analyze (e.g.,
Hake, 1998) and has contributed much to the literature on
learning in introductory physics courses (e.g., Hake,
2002), specifically with regards to comparing “traditional”
approaches to teaching to more interactive or innovative
approaches. For example, Bonham et al. (2003) used the
FMCE (in addition to other measures) to compare student
learning between two groups: one which engaged in paper-
based homework assignments and another which engaged
with web-based homework.

Discussions about the use of concept inventories in PER
take place frequently in various communities and on
listservs such as the Physics Learning Research List
(PhysLrnR1). Though concept inventory use is widespread,
it is not without some debate. For example, on many
concept inventories, students “hit the ceiling” on the post-
test (i.e., obtain a perfect score). This becomes a potential
issue when calculating a gain score. Another issue that has
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been discussed recently relates to the context in which
students’ understanding is measured. Are measures of
Newtonian Thinking that derive from scores on a concept
inventory different from those that might derive from a
performance based setting (e.g., lab)? In other words,
researchers are thinking critically about the strengths and
limitations of these concept inventories. Despite these
potential issues, the use of concept inventories provides a
sort of common ground upon which we can communicate
and compare our findings, and as such their use remains
popular in discipline-based education research, especially
in PER. This article reports on research which has impli-
cations for the “ceiling” issue while accepting the contex-
tual limitations of this and other concept inventories.

Measures of change in PER are most commonly based
on a comparison of raw scores from pre–post testing. A
student’s composite score on an exam serves as a proxy
for their ability with respect to the construct of interest, in
this case Newtonian thinking. Within that framework, dif-
ferences in post- and pre-test raw scores are often normal-
ized and used as indicators of the amount of change in
student conceptual understanding that has occurred during
instruction (e.g., Hake, 1998). Although these normalized
raw score difference measures are quite useful as indica-
tors of change in understanding, they have some problems.
The measurement models applied to these types of analy-
ses are a part of Classical Test Theory (CTT), which is
based on observed raw scores and considers those scores
to be composed of true score and error score components.
The most notable issues with these CTT measures of
change include the raw score bias (and resulting problems
in scale), potential low reliability of change scores if cor-
relation between pre- and post-test scores is high, and
spurious relationships between gain scores and initial
scores due to measurement error (Bereiter, 1963).

This particular study addresses the following research
questions: At the item-level, how does an Item Response
Theory (IRT) approach to the measurement of change on
the FMCE compare to CTT measures of change? Further,
do these different approaches to measuring change on the
FMCE lead us to make different inferences about student
learning of Newtonian Physics?

Item Response Theory is a theoretical approach to
designing, analyzing, and scoring tests. It is often associ-
ated with current research and work in construct-based
measurement (Wilson, 2005) which pays particular atten-
tion to the construct as the theoretical object of interest.
IRT statistical models are probabilistic models and as such
generate estimates of a respondent’s ability or the diffi-
culty of items on a test. Because of the rigorous develop-

ment process and strong statistical foundations, these
methods are often used in the development and analysis of
high-stakes tests such as the Graduate Record Exam
(GRE). However, also because of the characteristics, IRT-
based development and analyses are intensive, difficult to
learn and carry out, and results are not always straightfor-
ward to interpret.

The next section of this article will provide some back-
ground on the FMCE. Both CTT and IRT measures of
change on the FMCE will be presented, and the assump-
tions underlying each of these approaches will be dis-
cussed and contrasted. The methods section then describes
the sample used in this study and the CTT and IRT analy-
sis results (linked to specific items on the FMCE). It will
be shown that an examination of how item difficulty
changes from pre- to post-test can provide researchers
with more detailed information about changes in student
understanding as compared to aggregate test scores. By
considering the items as an indicator of change, one can
isolate and examine specific aspects of Newtonian think-
ing. Further, there exists a stronger statistical basis for
making these item comparisons under the assumptions of
IRT (as opposed to CTT), which will be discussed in the
methods section. Finally, the discussion section will syn-
thesize the results of the study and suggest future direc-
tions for research.

The Force and Motion Conceptual Evaluation
The FMCE was designed to characterize students’ con-

ceptual understanding of Newtonian mechanics (Thornton
& Sokoloff, 1998). More specifically, it is intended to
measure student understanding of kinematics and New-
ton’s laws in one dimension which are generally covered
in introductory physics courses. The original purpose of
the FMCE was one of formative assessment, as it was
intended to be useful as a guide to instruction by indicating
in which areas of mechanics student views differed from
those of a physicist (Thornton & Sokoloff, 1998).
However, many current uses of the FMCE are for charac-
terizing change in students’ views, which are more of a
summative or evaluative form of assessment rather than a
formative one. Thornton, Kuhl, Cummings, & Marx
(2009, p. 2) state that “the FMCE was not originally
designed to have results analyzed with a single-number
score, but to begin our comparison, we felt it necessary to
create such a score for the exam.” In this way, a students’
(and a class’) FMCE change scores are used to character-
ize changing views about physics understanding. These
measures of change are then compared across courses in
order to make comparisons of instructional efficacy (e.g.,
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comparing Interactive Engagement [IE]2 courses with tra-
ditional courses (e.g., Hake, 1998) ). Indeed, the FMCE
authors themselves have used the instrument for making
these cross-course comparisons. The most common use of
this instrument is therefore quite an extension of the origi-
nal design intention.

The FMCE is used in both algebra and calculus-based
general physics courses. These courses usually have large
enrollments (between 60 and 500 students per semester).
A recent meta-analysis (Ruiz-Primo, Briggs, Iverson,
Talbot, & Shepard, 2011) identified 148 comparative
studies from 74 papers in physics education, six of which
used the FMCE and normalized gain scores to compare an
innovative instructional approach to a more traditional
one. For example, Cummings, Marx, Thornton, and Kuhl
(1999) used the FMCE to evaluate the effectiveness of
Interactive Lecture Demonstrations, Cooperative Group
Problem Solving, and a standard Studio Physics course.
The goal of this work was to characterize the effect of
incorporating research-based activities into the Studio
Physics course. In another set of studies, Smith and
Wittmann (2007) used the FMCE to compare the effect of
different tutorials on students’ understanding of Newton’s
Third Law. Overall pre-test FMCE score was used to
establish group equivalence. A subset of FMCE items was
also used for pre–post comparisons using normalized gain
scores.

The FMCE consists of 47 multiple choice items, each
with between five and nine answer choices (some of which
are purposeful distractors). The authors score the FMCE
on a scale of 0 to 33 points, which is based on a composite
of the first 43 questions on the instrument.3 Sets of ques-
tions make up categories which are all parts of the con-
struct “Newtonian Thinking.” For example, questions
8–10 (see Figure 1) deal with the force on a cart moving on
a ramp, questions 11–13 deal with the force on a coin
tossed into the air, and questions 27–29 deal with the
acceleration of a coin tossed into the air. In order to be
deemed a “Newtonian thinker,” a student must answer all
three of the questions in each of these groups correctly.
The composite score derived from the first 43 questions
depends upon these categorical groupings. In practical
analyses, a composite raw score of about 40% (of the 33
points possible) or below is indicative of non-Newtonian
thinking (Thornton et al., 2009).

When the FMCE was created, many physics experts
thought the items to be too simple. They “expected that
most [students] would answer in a Newtonian way after
traditional physics instruction at a selective university.”
Even after obtaining student responses which showed that

very few changed their views after traditional instruction,
“some professors suggested that perhaps the questions are
not significant (or valid or reliable) measures of students’
knowledge” (Thornton & Sokoloff, 1998, pp. 338–339). In
discussing the validity of the FMCE, Thornton and
Sokoloff report quite a difference in student responses
between those in IE courses and those in traditional
courses. In addition, during development of the FMCE,
Thornton and Sokoloff administered the test to “hundreds”
of physics faculty, and compared student responses from
the multiple choice version to those from an open-ended
version which prompts for explanation. They found a very
high correlation between these two forms of the test (Saul,
1998). Though there are many pieces of evidence for the
validity of the FMCE, there has been no coherent validity
argument developed with the depth suggested by frame-
works such as the Standards for Educational and Psy-
chological Testing (American Educational Research
Association, American Psychological Association, &
National Council on Measurement in Education, 1999).

Common Approaches to Measuring Change on
the FMCE

The authors of the FMCE intended student responses to
be analyzed on the basis of raw scores using Classical Test
Theory (CTT). In this approach, the composite raw score
on the instrument is the statistic for representing the latent
variable (in this case, the students’ ability to think in
Newtonian terms). Under the assumptions of CTT, this
observed raw score can be decomposed into a true score
(fixed factor) and an error component (random effect).
Comparisons between scores (individual students or class

Figure 1. Common grouping of items dealing with force acting on a car on a
ramp.
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averages) make no distinction in location on the score
continuum. For example, a difference of two points near
the bottom of the score range is considered to be the same
interval as a difference of two points in the middle of the
score range. In other words, an interval scale is assumed to
exist across the scoring range.

The most common gains analysis applied to the scores
from a physics concept inventory (such as the FMCE) is
the average normalized gain <g>, which Hake (1998)
introduced as

< > ≡ < >
< >

= −( )
−( )

g
G

G

Y X

Xmax 100
(1)

where X and Y are the class averages (expressed as a
percentage) on a particular physics concept inventory taken
at the beginning (i.e., “pre” (X ) ) and end (i.e., “post” (Y ) )
of an introductory course in physics. <G> and <G>max

represent the class average (raw) gain from pre- to post-
tests and the maximum possible class gain respectively
(both expressed as percentages). <G>max is the normalizing
factor which serves to scale the gains (<G>) and attempts to
deal with the observed ceiling effects of the instrument
(many of the observed final scores Y are 100%). This
normalization makes the assumption of an interval scale
across the score continuum. However, in reality, these raw
scores are not on an interval scale. They are ordinal at best.

For the data used in this study, <g> was calculated to be
.64.4 This is based on the 336 pre/post-test matched raw
scores derived from Thornton and Sokoloff’s 0–33 point
scoring algorithm (see above section on the FMCE). This
is a very high value for <g> compared to those reported in
many other studies, and is nearly in the “high-g” range as
defined by Hake (1998). It is important to note that 51 of
the 336 matched scores (approximately 15%) had a gain of
1, indicating that they had a perfect score on the post-test.

Commonly, analyses using <g> focus on the entire
population of students in the course as the unit of analysis.
They do not often consider individual students or items as
cases for analysis. If such analyses do provide data about
responses to particular items or sub-concepts within the
framework of Newtonian thinking, it is done under the
assumptions of CTT (since the basis for these comparisons
is based on raw scores). For example, Thornton and
Sokoloff (1998) report the percent correct pre- and
post- for various questions on the FMCE as “effect[s] of
traditional instruction” (p. 339, Figure 1). Coupled with
various correlation studies (involving subgroups by
student demographics, education, etc.), measures of <g>
are accepted by much of the PER community as a basis for
making inferences about efficacy of instruction (e.g.,

Cummings et al., 1999; Meltzer, 2002). For example,
based on measures of <g> on FCI and FMCE administra-
tions, Cummings et al. (1999) determined that Coopera-
tive Group Problem Solving (an instructional innovation)
led to gains in conceptual understanding.
Problems in Measuring Change Using CTT

As mentioned above, raw score measures of change have
some limitations. Bereiter (1963) identifies three main
“dilemmas”: (a) the “over-correction-under-correction
dilemma,” (b) the “unreliability-invalidity dilemma,” and
(c) the “physicalism-subjectivism dilemma.” I will discuss
each of these in turn, as well as ways in which they can be
dealt with.

Observed pre-test scores and change scores share the
same elements of measurement error (with opposite
signs). Consider the following expressions for observed
pre-test score (X ), observed post-test score (Y ), and
observed change score (Y − X):

X X et x= + (2)

Y X G et t y= + + (3)

Y X G e et y x− = + − (4)

In Equations 2–4, Xt represents true pre-test score, ex rep-
resents random error on the pre-test, ey represents random
error on the post-test, and Gt represents the true change
score. Note that algebraically, the observed pre-test (X )
and change scores (Y-X ) share the same error in measure-
ment (ex) with opposite signs. Because of this, there exists
a “spurious negative element” in their correlations. In
other words, when raw gain (change) score (Y-X ) is
regressed on initial score (X ), the correlation will likely be
understated due to the fact that in part, it is a regression of
−ex on +ex. This shared component of measurement error
calls for a correction in the regression of gains on initial
scores. This regression itself (of gain score on initial score)
is necessary in order to characterize the reliability of the
change measurement.

However, the correction for this regression is not
straightforward. As Bereiter (1963) notes, the work of
Garside shows us that three different methods of solving
for this regression (all of which as “plausible”) provide us
with three widely varying results (an increase in correla-
tion, a decrease in correlation, and an indifference).
Depending on which method (or whether some other
method, such as a partial correlation) is used, the correc-
tion to account for this error sharing element of pre-test
and gain scores will either be overstated or understated.
Most research reports the uncorrected correlations.

Item-Level Approach to Measuring Change with FMCE

School Science and Mathematics 359



The most common concern with change scores has to do
with the “unreliability-invalidity dilemma.” Related to the
problem with regressing gain scores on initial scores, this
dilemma presents itself as a result of these correlations.
Researchers would usually like to see a low correlation as
a result of this regression, which indicates a higher reli-
ability for the gain scores. However, the problem with this
logic is that a very low correlation between gain scores and
initial test scores brings into question the validity of the
instrument. If these things are not correlated, then it can be
argued that the instrument used to obtain the observed pre-
and post-test scores do not measure the same construct
(i.e., construct definition has changed for the sample from
pre- to post-administrations). If the test is therefore not
valid, then the change scores on that test lack substantive
meaning. This paradoxical relationship has been dealt with
in numerous ways, and it can be shown that despite the
above logic, gain scores can be reliable without having to
show low correlations between gain scores and initial
scores (Willett, 1988–89).

For this data set, the correlation between <g> and pre-
test scores is .026, which is lower than the correlation
between raw gain scores and pre-test scores (.174).
However, it is still reasonable to believe that this difference
is within the range of measurement error in the scores and
is therefore subject to Bereiter’s first two dilemmas.

The most persistent dilemma in measuring change
under the assumptions of CTT has to do with what
Bereiter calls “physicalism-subjectivism.” This has to do
with the scale properties of CTT measurement models,
namely that these models assume interval scaling in which
equal changes in units anywhere along the scale account
for equal changes in the construct being measured. When
this dilemma presents itself (as it always does in the mea-
surement of change), Bereiter states that one has “the
unpleasant option of sticking with the particular scale
units given or some rather arbitrary transformation of
them (physicalism), or else abandoning the given units in
favor of others that seem to conform to some underlying
psychological units (subjectivism)” (1963, p. 5). Although
it is easy to pick some transformation of scale and ignore
this dilemma, it is especially problematic when many of
the raw scores observed are near the extremes. In the
present sample, roughly 15% of the students hit the ceiling
(i.e., obtained a perfect score) on the FMCE post-test.

Taken together, “these problems seem irresolvable
because the change measurements are based on CTT, in
which the estimation of item and person parameters is
mutually confounded” (Wang & Chyi-In, 2004). The
application of IRT to the measurement of change on the

FMCE will focus on isolating the items from the persons
and examining the change in their difficulties. This is
especially appropriate for an analysis of the FMCE, since
it can be broken down into subsets of items relating to the
construct of Newtonian Thinking as outlined by its design-
ers. CTT-based approaches are not as well suited to this
type of analysis.

CTT modeling does not allow the simultaneous assess-
ment of multiple aspects of examinee competence and
does not address problems that arise whenever separate
parts of a test need to be studied or manipulated. Formally,
CTT does not include components that allow interpreta-
tion of scores based on subsets of items in the test
(Pellegrino, Chudowsky, & Glaser, 2001, pp. 120–1).

Methods
Sample

The current study was conducted at a large public
research university in the mountain west, where the FMCE
is routinely administered to students in introductory,
calculus-based physics courses pre- and post-instruction.
The course from which the sample was drawn is the first in
a three-course sequence for science and engineering stu-
dents, is calculus based, and covers a mechanics curricu-
lum. The data for this study come from the spring semester
of 2004, which was taught using IE methods. Specifically,
the course instructor utilized clickers and the Peer Instruc-
tion model (Mazur, 1997), and made use of Learning
Assistants (LAs; Otero, Finkelstein, McCray, & Pollock,
2006). The LAs worked primarily in the associated
recitation/lab sections (∼25 students in each) which
used the Washington Tutorials in Introductory Physics
(McDermott & Shaffer, 2002). The course also used an
online interactive homework system (CAPA: Computer-
Assisted Physics Assignments) and a help room for
physics students which was staffed daily from 9:00–5:00.
It should also be noted that the course instructor was very
experienced in teaching using IE methods.

The total number of FMCE pre-test respondents was
468, and total number of post-test respondents was 410.
Matched pre- and post-test data exist for 336 students.
This is important to note because any gains analysis under
CTT can use only these 336 matched student responses.
The IRT-based approach to examining change through
item difficulty analysis is able to use all respondent data
(468 pre- and 410 post-, representing 531 distinct respon-
dents in total). This is because the analyses focus on the
“items” themselves, rather than the respondents, and in
IRT the estimation of item and person parameters is not
mutually confounded, as in CTT.
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Approximately, 75% of the respondents were male, and
25% were female. Other background variables such as
race and socioeconomic status (SES) were not available.
Analysis

The initial analysis treated all 47 items on the FMCE as
independent and dichotomously scored. I used a Rasch
model (Bond & Fox, 2007; Rasch, 1980) to estimate the
item difficulty parameters for each of the 47 items on the
pre-test (n = 468).

P Xis s i
s i

s i

=( ) = −( )
+ −( )

1
1

| ,
exp

exp
Θ Θ

Θ
β β

β
(5)

This one-parameter logistic model (Equation 5) estimates
the probability of correct response to an item i by a person
s. In the model, Xis represents the response of person s to
item i, Θs represents the ability estimate (i.e., trait level) of
person s, and βi is the difficulty of item i. For the purposes
of this analysis, the person ability estimate (Θs) was con-
strained to have a mean of zero while item difficulty (βi)
was free to be estimated by the modeling software.

I used the IRT modeling software ConQuest (Wu,
Adams, & Wilson, 1997) to estimate the item difficulty
parameters from the pre-test data. Once the pre-test item
difficulties were obtained, a second data set was created
that included both pre-test and post-test items (94 items
total) for all respondents (n = 531). In this fashion, I could
command the software to freely estimate the post-test item
difficulties while anchoring the pre-test item difficulties
which were previously modeled. Direct comparisons could
then be made between the values obtained for pre-test and
post-test item difficulties for each item.

I also conducted a secondary analysis in which I divided
the FMCE into 11 “testlets” (Wainer & Kiely, 1987) based
on content groupings similar to those discussed above.
This was done in order to deal with the violation of the
local independence assumption of IRT. Due to the fact that
groupings of items shared common answer pools, it is
reasonable to assume that items within these groups were
locally dependent on one another. In this analysis, I used a
Partial Credit Model (PCM; Masters, 1982) to analyze the
resulting polytomous testlet item data. This model is
part of the Rasch family of IRT models, and is given by
Equation 6.
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This equation gives the probability of a person with ability
Θ responding to item i with response x (where item i is
scored from x = 0 to mi [the maximum number possible for
item i] ). The category response is denoted by j, and the
parameter δij represents step difficulty—the location on
the latent ability continuum where a respondent has a 50%
probability of a response in category x relative to category
x-1.

Again using the ConQuest software (Wu et al., 1997), I
ran a PCM on the pre-test response data (n = 468) in order
to obtain item parameter estimates. These estimates were
used to anchor the subsequent run, which included both
pre- and post-test responses (n = 531). Again, in the first
model run, person ability estimates were constrained to
have a mean of zero so that item parameters were free to be
estimated by the model. The second (combined) run had
double the number of testlets (22 total). In this run, pre-test
item (testlet) difficulty parameters were anchored to those
obtained in the first run, and post-test item (testlet) diffi-
culty parameters were estimated relative to these pre-test
values. The resulting item parameter estimates from both
runs (pre-test items from the first run and post-test items
from the second run) serve as the basis for this secondary
analysis.

The description of the IRT models used makes explicit
two of the greatest limitations of IRT: (a) estimation pro-
cedures for both person ability and item difficulty are
complex and not straightforward, and (b) many practitio-
ners and researchers lack the knowledge and experience to
carry out such procedures and interpret the results. CTT-
based calculations and score interpretations are quite
intuitive and well accepted by many educators and
researchers. IRT can appear to be a sort of “black box”
which does not lend itself to widespread adoption and use.

Results
Dichotomous Rasch Analysis

For both analyses, I express changes in item difficulty
from pre- to post-test in terms of effect sizes. Equation 7
gives the effect size (E) calculation based on CTT item
difficulty, and Equation 8 gives that for IRT item difficulty
estimates.

E
p p

SD
CTT

post pre

p all itemspre

=
−( )

_
(7)

E
SD

IRT
post pre

all itemspre

=
−( )β β

β _
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In Equation 7, ppost represents item difficulty for the item in
the post-test, ppre represents the item difficulty for the item
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in the pre-test, and SDp-pre_all_items is the standard deviation
for all 47 pre-test item difficulties (p values). In Equation
8, βpost represents IRT item difficulty parameter for the
item in the post-test, βpre represents the IRT item difficulty
parameter for the item in the pre-test, and SDβ-pre_all_items is
the standard deviation for all 47 pre-test item difficulties
(β values). The absolute value is taken for the difference
between post- and pre-item difficulties in the IRT calcula-
tion due to the fact that the scale is inverted relative to the
p values in CTT. In IRT for example, β values become
smaller (even negative) as the item gets easier. Plots of
CTT and IRT change in item difficulty effect sizes for the
first (47 item) analysis are shown in Figure 2. In compar-
ing the two plots visually, one notices a general compres-
sion in effect size for change in IRT difficulties relative to
that for CTT difficulties.

Note that a direct quantitative comparison between the
CTT and IRT item difficulty effect sizes is not possible due
to differences in variance and scale. For example, the CTT
item difficulties for the pre-test items have an SD = .24,
while the IRT item difficulties for the pre-test have an SD =
1.71. Because the CTT difficulties are on an ordinal scale
and the IRT difficulties are on an interval scale, normalizing
both sets of difficulties for direct comparison is not a
statistically sound strategy either. Because of these issues, I
will discuss the item difficulties from the two measurement
models as they pertain to each item without quantitatively
comparing the two different effect size measures.

Discussion of dichotomous Rasch analysis. In each of
the plots of change in item difficulty effect size, there are
groups of items that clearly have lower effect sizes than the
others. Although the order of the lowest effect size items is
slightly different in the IRT and CTT models, the items in
this grouping are the same (see Table 1) for each measure-
ment model.

Item 37 is one of a group of questions about a car
pushing a truck and deals with Newton’s Third Law.
Fifty-eight percent of respondents answered this question
correctly on the pre-test, and 83% answered it correctly
on post-test. An interesting question to ask is why the
change in item difficulty for this question is so much
lower than that for the related questions, 35, 36, and 38?
Items 36 and 38 were extremely difficult for pre-test
respondents (8% and 7% correct, respectively) and deal
with Newton’s Third Law and the concept of acceleration
in the same situation. Part of the low effect size for item
37 can be accounted for by the fact that it was the easiest
of these four items to begin with, and therefore did not
have as much room to change. I will further examine
this grouping in the polytomous testlet item analysis, as
these items together make up one the testlet groupings
(testlet 8).

Items 40 through 43 ask the respondent to choose appro-
priate velocity–time graphs to describe the motion of a car
in different situations. These items were fairly easy for
pre-test respondents (71–90% correct) and very easy for
post-test respondents (86–95%). Again, I will further
examine these items as a group (these items comprise
testlet 10) in the next section.

Item 15 asks the respondent to choose the force-time
graph which represents a car at rest. This item was very
easy both on the pre-test and post-test, with 94 and 97%
(respectively) answering it correctly. Again, because it was
relatively easy on the pre-test, there is not much room for
growth or change.

Item 33 was very easy for respondents on both pre- and
post-tests. It deals with a collision between vehicles of
equal mass and asks respondents about the forces acting
on the vehicles during the collision. Similar to the above
interpretation, because this item has such a low difficulty,
there is no room for change.
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Figure 2. CTT and IRT change in item difficulty effect sizes.

Table 1
Lowest Change in Item Difficulty Effect Sizes for Both CTT and IRT Models

CTT Lowest Item
Difficulty Effect Sizes

IRT Lowest Item
Difficulty Effect Sizes

Item Effect Size Item Effect Size

37 1.01 37 .90
41 .62 42 .72
42 .51 41 .67
43 .22 43 .59
40 .10 15 .49
15 .09 40 .26
33 −.07 33 .14

CTT = Classical Test Theory; IRT = Item Response Theory.
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At the other end of the effect size range, there are similar
groupings of items that have the highest change in item
difficulty effect sizes under both the CTT and IRT models.
These items and their effect sizes are shown in Table 2.

Items 30, 31, 32, and 34 are all part of the same group-
ing on the FMCE and deal with collisions and Newton’s
Third Law paired forces. These items were all quite diffi-
cult for respondents on the pre-test (between 18 and 28%
answered them correctly) and were somewhat easy for
respondents on the post-test (between 83 and 87%
answered them correctly). These changes indicate a large
growth in student understanding regarding this particular
topic. Item 33 (which is also part of this grouping) was
discussed above and was one of the easiest items overall
and therefore did not have much room for change.
Together, items 30 through 34 make up testlet 7 and will be
discussed in the next section.

Item 28 is one of a group of three items (in testlet 6)
which asks students about the acceleration of a coin tossed
straight up into the air. This particular item asks about the
acceleration at the top of the trajectory. Nineteen percent
of students answered this correctly on the pre-test, and
82% answered it correctly on the post-test. The idea that
the coin has an acceleration equal to −9.8 m/s2 (the accel-
eration due to gravity, g) at the top of its trajectory is a
difficult concept for students to understand.

Items 11 and 12 also refer to a coin tossed into the air,
but instead of asking students about the acceleration of the
coin, these items ask students about the force acting on the
coin. For both items, 19% of students responded correctly
on the pre-test, and 80–82% responded correctly on the
post-test. It is reasonable to think that on the pre-test, the
alternative conception was that students assumed that
since the coin was either moving upward (question 11) or
motionless at the top (question 12), then there could not be
a downward force on the coin (the force due to gravity).

Because questions 12 and 28 (discussed above) are so
closely related, it is not surprising to see low pre-test
scores on item 12 after having examined item 28. Data
from items 11 and 27 indicate discordant thinking on the
part of the respondents regarding force and acceleration on
the upward-moving coin.

In the next section, I will examine many of these items
grouped together into testlets. Because I do not have set
criteria for success on each testlet that can be expressed as
p-values (under CTT assumptions), the discussion will
deal only with testlet item difficulties as obtained by the
polytomous PCM analysis.
Polytomous PCM Analysis

As would be expected, the average item (testlet) diffi-
culties decreased from pre-test to post-test (see Figure 3).
What is worth looking at in detail is the relative change in
difficulty between testlets and the content of each testlet.
For example, the largest magnitude decrease in testlet dif-
ficulty is seen in testlets 3 and 6. Each of these testlets
decreased in difficulty by an effect size of about 2.3 effect
size units. These two testlets each had to do with the same
physical phenomenon (the coin tossed into the air). On the
other hand, the lowest magnitude decrease in testlet diffi-
culty is seen in testlet 9 (Newton’s Third Law) and testlet
10 (one-dimensional motion and velocity-time graphs).
Testlet 10 was the easiest item to begin with (it is com-
posed of items 40–43, which are discussed above), so its
difficulty could not change much from pre-test to post-test.
Testlet 9, however, was of average difficulty initially.

Discussion of polytomous PCM analysis. Given the
above information about changes in item difficulties from
pre-test to post-test, I am now in a position to make some
initial inferences about student learning in the specific
areas of Newtonian thinking. The largest gains made by

Table 2
Highest Change in Item Difficulty Effect Sizes for Both CTT and IRT Models

CTT Highest Item
Difficulty Effect Sizes

IRT Highest Item
Difficulty Effect Sizes

Item Effect Size Item Effect Size

30 2.83 30 2.61
34 2.73 34 2.44
32 2.67 32 2.40
28 2.61 28 2.33
12 2.59 12 2.28
11 2.54 31 2.23
31 2.48 11 2.21

CTT = Classical Test Theory; IRT = Item Response Theory.
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Figure 3. Testlet change in item difficulty effect size.
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this class were on the items dealing with the force and
acceleration of a coin tossed into the air (testlets 3 and 6).
Although the items in these groups were some of the more
difficult ones on the pre-test, they were not the most dif-
ficult. Testlets 2, 1, and 4 were all more difficult for the
students. Therefore, it is reasonable to think that the large
changes in item difficulty effect size for testlets 3 and 6 are
not merely artifacts of their initial difficulty. It would be
interesting to investigate how the topic of free fall was
represented in the course curriculum and instruction rela-
tive to other topics, such as Newton’s Second Law (testlet
1, which showed lower gains).

The areas that showed the lowest change in item diffi-
culty effect size were testlets 5 and 9. Testlet 9 consisted of
only one item which deals with Newton’s Third Law.
Thirty-one percent answered this item correctly on the
pre-test, and 84% answered it correctly on the post-test,
making it an item of mid-range difficulty initially. Testlet 5
presents the student with acceleration vs. time graphs
related to the motion of a car on a ramp. These items were
also of mid-range difficulty initially (32 to 51% answered
correctly on pre-test) and of moderate difficulty on the
post-test (73 to 80% answering correctly). It is somewhat
surprising that these items (which represent concepts basic
to Newtonian thinking, namely kinematics in one dimen-
sion) were not easier on the post-test.

Conclusion
In answering the first research question (At the item

level, how do IRT approaches to the measurement of
change on the FMCE compare to CTT measures of
change?) I find that the changes in item difficulty as deter-
mined by the two measurement models are not all that
different. In the first analysis, the change in item difficulty
effect sizes as found under the CTT and IRT models lead
one to examine the same sets of questions. Groupings of
items that had the highest and lowest change in item dif-
ficulty effect sizes were the same regardless of the mea-
surement model used. Although I did not have a basis for
quantitatively comparing the effect size measures from
both models, a qualitative comparison shows that they are
quite similar, but that the range of IRT effect sizes was
compressed relative to those for CTT. Based on these
findings, I would recommend that researchers should con-
tinue to use CTT measurement models but should consider
examining changes in item performance as well as student
performance. That said, there is a stronger statistical basis
for making claims based on such analyses under the IRT
measurement model. The obvious trade-off is ease of inter-
pretability for audiences not familiar with IRT. As stated

above, this is a major limitation of using IRT. Lack of
familiarity with probabilistic modeling of abilities and
item difficulties makes modeling, interpretation, and com-
munication of results difficult.

In addressing the second research question (Do the IRT
approaches to measuring change on the FMCE lead us to
make different inferences about student learning of New-
tonian Physics?), the answer is less clear. Using the
dichotomous 47-item Rasch analysis, the answer would be
“no.” However, using the testlet-based approach and a
polytomous Partial Credit Model, I might have a different
answer. In order to deal with the violation of the assump-
tion of local independence, items with common answer
pools were grouped into testlets. The secondary analysis of
the change in item difficulty effect sizes for these testlets
provided information that was not available under the CTT
measurement model. Specifically, these common item
groupings that dealt with similar content could be more
easily compared to one another so that different inferences
could be made about these groups. The take-home
message from this analysis is to consider analyzing con-
ceptually coherent item groupings in addition to aggregate
test scores. But a more nuanced implication is that one
must have a theory for defining such item groupings,
which is a tenet of construct-based measurement and IRT
modeling. In the case of these analyses, that theory was
both statistical (based on local item dependence) and
content oriented. Such groupings need to be theoretically
defined in order to support the analyses used and infer-
ences drawn. A set of items that look similar may not
constitute a theoretically based grouping upon which
inferences can be made. Further, from a validity stand-
point one must understand the very real limitations of
choosing a subset of items from a test. In doing so, the
construct has changed, and previous validity evidence may
no longer support such a use.

From a statistical standpoint, the next steps in this line of
research should focus attention in two areas: (a) developing
a non-parametric method for comparing change in item
difficulties under the two measurement models, and (b)
using this method to make comparisons of gains (from the
perspective of change in item performance) between differ-
ent semesters of the same course. Once researchers have a
sound statistical basis for making these between-semester
comparisons, we can better compare gains from the per-
spective of changing item performance to those character-
ized by the normalized gain <g>. From the standpoint of
science educator and science education researcher, future
research should examine the degree to which the analysis of
conceptually coherent (e.g., theoretically defined) item
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groupings can provide insight into change in students’
conceptual understanding, while acknowledging the poten-
tial threats to validity that such an approach might intro-
duce. The current use of aggregate scores from concept
inventories may be too blunt an instrument in some cases,
especially when we also have at our disposal a much sharper
instrument.
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Author’s Notes
1 http://www.compadre.org/psrc/items/

detail.cfm?ID=924 and http://listserv.buffalo.edu/cgi-bin/
wa?A0=physlrnr-list

2 Interactive Engagement (IE) is “designed at least in
part to promote conceptual understanding through inter-
active engagement of students in heads-on (always) and
hands-on (usually) activities which yield immediate feed-
back through discussion with peers and/or instructors”
(Hake, 1998).

3 Questions 44–47 deal with mechanical energy and are
usually not included in the analyses. It is not always clear
if the same scoring strategy is followed in different analy-
ses using the FMCE. For example, Cummings et al. (1999)
do not include questions 44–47 and explicitly cite Thorn-
ton in their discussion of scoring, who also omits question
6 from some analyses. In short, there appears to be some
variability in the way researchers score the FMCE
responses.

4 This value of <g> is based on using the class average
pre- and post-test scores, as described above in the expla-
nation of the equation for <g>. Another approach is to
average the individual student gains and use this as a
measure of the class <g>. Using this method yields a <g>
of .66 for the same data.
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