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There is strong evidence that the implementation of active learning in undergraduate science courses can lead
to increased student conceptual understanding and course achievement, but we still do not know what specific
characteristics of active learning contribute the most to student success. Our work examines the tasks that
students are asked to engage with during active learning, with the goal of investigating the relationship between
different task characteristics and student level outcomes. To this end, we are working to characterize the active
learning tasks that students engage with in the classroom with respect to authenticity and cognitive depth. This
paper presents our characterization of the tasks we have collected from four introductory physics courses at
three institutions and discusses the relationship between these characteristics and student gains on the Force and
Motion Conceptual Evaluation instrument.

I. INTRODUCTION

The use of active learning methods is increasingly
widespread in undergraduate science classrooms. There is
strong evidence that the implementation of active learning
methods can lead to better student outcomes like increased
conceptual understanding and course achievement [1]. Defi-
nitions of active learning are broad and include students being
engaged in activities and discussions as opposed to passively
listening in more traditional teaching approaches [2]. The
term covers a range of intersecting activity formats (e.g. prob-
lem solving, experimentation) and social interaction types
(e.g. individual, peers) [2]. Different reform goals have led
to the development of different methods, and these differing
goals along with failed communications during dissemina-
tion have resulted in differentiated implementations [3]. Not
all of these varying methods and implementations contribute
equally to student level outcomes [4]. Our work is concerned
with determining specific aspects of active learning that con-
tribute to student success [5].

One important element of active learning is the tasks with
which students are asked to engage. The study presented in
this paper investigates the relationship between active learn-
ing task characteristics and student success. Our hypothesis
is that students will be more successful in courses where they
are engaged in authentic group-worthy tasks. Section II out-
lines our theoretical framework which motivates our exam-
ination of active learning tasks and guides our characteriza-
tion. Section III describes our data collected in four intro-
ductory mechanics courses at three different institiutions. In
Section IV we provide details of our analysis of those tasks
and we present and discuss our results in Section V.

II. THEORETICAL FRAMEWORK

In our work, we use Activity Theory [6] to frame and con-
ceptualize the teaching and learning of science in the under-

graduate science classroom. This framework allows you to
consider an individual sudent’s learning as measured by out-
comes of interest (e.g. course grade, learning gains on an
assessment) through the subject-object-outcome space, while
the other vertices encorporate the mediational factors that are
present in a complex classroom environment (see Fig. 1).

In taking this approach for our work, we are interested
in the Activity of Learning Science. In the Learning Sci-
ence System, there are many actors in the system that make
up the Community (students, instructors, learning assistants,
etc). The primary purpose of the system is to support stu-
dent learning, therefore we center the student in this model.
In our system the mediating artifacts are defined as all of the
materials and resources that members of the classroom com-
munity engage with or around. These include textbooks, lec-
ture slides, worksheets, etc. We operationalize the rules of the
system as the norms of thinking and doing in the classroom,
i.e. the implicit and explicit guidelines for the way members
of the classroom community should behave. The division of
labour in our system is defined as the responsibilities of each
member of the community. These responsibilities are visible
through the actions each member makes to enact the class-
room norms. For example, in an active learning classroom,
students may be responsible for building their own under-
standing of class concepts by interacting with other students,
interacting with active learning tasks, asking questions, etc.
The instructor and LAs may be responsible for facilitating by
designing active learning tasks, encouraging students to work
together, guiding student group discussions, etc.

While these components of the activity system are dynamic
and interactional in nature, it is neccessary to first focus on
components individually in order to make sense of the sys-
tem as a whole. Here, we take a closer look at the the me-
diational artifacts, specifically the active learning tasks used
in the classroom. From a situated cognition perspective [7]
knowledge is a product of activity, context, and culture, and as
such learning takes place through a cognitive apprenticeship.
From this, we hypothesize that successful learning is more



FIG. 1: The Activity system as definied by Engestrom [6]
(above) and our operationalized system for the Activity of

Learning Science (below).

likely to occur when students are given opportunities to do
activities that scientists engage in, in ways that scientists do
(i.e. authentic tasks solved through social interaction). Also
assuming that students will be more likely to interact around
tasks that are more cognitively complex, we will character-
ize learning tasks in terms of authenticity and cognitive com-
plexity. The tools used to make those characterizations are
described in more detail in Section IV.

III. DATA

The data presented in this paper comes from four differ-
ent introductory mechanics courses at three institutions (see
Table I). The class sizes for all four courses were relatively
small ranging from 42 to 73 students. The classroom set-up
for Course A was traditional with movable chairs that faced
towards the front of the room, while the classrooms for the
other three courses were studio-style with students in grouped
tables at all times. The amount of active learning that occured
in each course varied from an average of 34% of class time for
Course A to and average of 69% of class time for Course D
(based on the Ind, CG, WG and OG COPUS student codes).

Tasks were collected during classroom observations where
the Classroom Observation Protocol for Undergraduate
STEM (COPUS) [8] was being used to identify types of
active learning methods. Anything students were working
on during the Ind (individual thinking/problem solving), CG
(discussing clicker questions), WG (working in groups on

TABLE I: Characteristics of our four sampled introductory
mechanics courses, and details of task and concept inventory

data collected in each course.

Course A Course B Course C Course D
Class size 42 44 73 73
Classroom Traditional Studio Studio Studio
% active 34% 59% 50% 69%
Observations 7 13 16 10
Tasks/day 5 6 5 2
Length (mins) 7 6 7 46
CI pre score (x) 20.3% 36.7% 32.3% 18.4%
CI post score (x) 37.5% 62.2% 64.7% 39%
CI gain (d) 0.91 0.95 1.41 1.30

a worksheet activity) and OG (other assigned group activ-
ity) codes was classified as a task. The collection method
varied by task type. For example, physical copies of work-
sheets were gathered, photos were taken of questions posed
on slides, and questions posed verbally by the instructor were
recorded. Courses A, B and C had a similar number of tasks
per day (5-6) and a similar average task length (6-7 minutes).
Course D had much fewer tasks that lasted almost 40 minutes
more on average. The task types used in courses B and C con-
sisted on mostly Peer Instruction [9] style clicker questions
and guided-inquiry style worksheets. Course A used text-
book style problems and clicker questions. Course D tasks
usually involved hands-on experiments. In all courses, activi-
ties were facilitated by the instructor and Learning Assistants
[10] who walked around the room and interected with indi-
vidual students and student groups.

Our student success outcome was measured through stu-
dent learning gains on the The Force and Motion Concep-
tual Evaluation (FMCE) [11]. We acknowledge that oper-
ationalizing student success through learning gains takes a
narrow perspective on what it may mean to be successful in
a course. However, it is typically the way in which educa-
tion researchers compare the impact of different teaching and
learning strategies and interventions [12]. Using concept in-
ventories over course grade is advantageous in that they are
research-based, validated, and standarized [12]. We used Co-
hen’s d [13] as our measure of student learning gains. This
value and the average pre and post test scores for each course
are shown in Table I. Cohen’s d takes into account the stan-
dard deviation for each score distribution. While courses A
and D have similar average pre and post scores (as do courses
B and C), the learning gains are different in each case beacuse
the spread in scores are different.

IV. ANALYSIS

The tasks were analyzed using two tools. The Three-
Dimensional Learning Assessment Protocol (3D-LAP) [14]



(a) Sample Task A (b) Sample Task B (c) Sample Task C

FIG. 2: Sample tasks collected from the introductory mechanics courses.

provided us with a measure of task authenticity. The 3D-
LAP is based on the idea of three-dimension learning [15]
which promotes the integration of scientific practices (e.g.
developing and using models, and using computational and
mathematical thinking), ways of thinking that span the sci-
ence disciplines (e.g. systems and system models, propor-
tion and quantity), and disciplinary core ideas in developing
tasks (e.g. interactions cause changes in motion). Not only
does engaging in scientific practice align with the way we de-
scribed authenticity, but also focusing on a few central con-
cepts creates further alignment because it is around those that
science practitioners organize and contextualize their knowl-
edge [16]. The 3D-LAP outlines criteria that a task must meet
in order to determine if that task is likely to prompt student
enagement with any of the three dimensions. We used the
revised Bloom’s Taxonomy [17] to determine the cognitive
complexity of a task. The taxonomy describes six hierarchi-
cal cognitive processes by which learners engage with knowl-
edge: remember, understand, apply, analyze, evaluate, create.
Figure 2 shows some sample tasks and Table II shows the cor-
respoding characterization for those tasks. One coder coded
all of the tasks for all four courses. Another coder coded a
random 25% of tasks for each course. The % agreement was
99% for Bloom’s level and 96% for the 3D-LAP codes.

TABLE II: Bloom’s Level and 3D-LAP characterizations for
sample tasks shown in Figure 2.

Task A Task B Task C
Bloom’s Level Apply Understand Create
Core Idea Interactions Interactions Interactions

cause changes cause changes cause changes
in motion in motion in motion

Crosscutting None Proportion None
Concept and quantity
Scientifc None None Developing
Practice and using models

V. RESULTS AND DISCUSSION

The 3D-LAP rating for tasks from all four courses is sum-
marized in Figure 3a in terms of the number of dimensions
present per task. The majority of tasks in all courses were
one-dimensional containing just a core idea (Interactions Can
Cause Changes in Motion, Energy is Conserved, or Ex-
changes of Energy increase Total Entropy). Only courses C
and D had any three-dimensional tasks. Overall, the vast ma-
jority of tasks could not be considered authentic with courses
A, B and C only having 11%, 3% and 13% of their tasks con-
taining scientific practices. Course D had the most authen-
tic tasks with 31% of them being three-dimensional and 41%
containg scientific practices. The cross-cutting concepts in
the tasks across all four courses were Proportion and Quan-
tity and Systems and System Models. The scientific prac-
tices present were Analyzing and Interpreting Data, Devel-
oping and Using Models, Using Mathematics and Computa-
tional Thinking, and Constructing Explanations and Engag-
ing in Argument from Evidence.

The distribution of tasks across the Bloom’s levels in all
four courses is shown in Figure 3b. For all four courses,
the majority of tasks are in the Understand and Apply lev-
els. Only course D has tasks (25%) above the Apply level.
Despite barely any tasks being at the lowest level, overall the
majority of tasks were still not very cognitively complex.

So what is the relationship between the task characteristics
of authenticity and cognitive complexity and student success
as measured by effect size of FMCE scores? There is some in-
dication of a positive correlation between task authenicty and
student success. Courses C and D are the only two courses
that had three-dimensional tasks and those two courses has
the highest effect sizes, 1.41 and 1.30 respectively. Contradic-
iting this however, course D had more three-dimensional
tasks and yet had slightly lower effect size than course C.
With regard to cognitive complexity, this is a similar story
for course D. Course B’s tasks had the lowest Bloom’s rat-
ing being the only course to have some tasks at the Remem-
ber level and having more Understand and less Apply than
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(b) Bloom’s Level rating for tasks in each course.

FIG. 3: Summary of 3D-LAP and Blooms’ Level rating for
tasks in each course.

course A, yet had a comparable effect size to course A. Given

the number of courses that we have sampled thus far, we are
not able to make a claim about the relationship between task
characteristics and student success in terms of statistical sig-
nificance. However, we are currently extending this study
to more introductory physics, chemistry, and biology courses
and will be able to investigate the strength of the correlation.

Interpreting the active-learning task-student success rela-
tionship is complex. As we discussed in our theoretical
framework section the mediating artifacts are part of a sys-
tem. While focusing on characterizing active learning tasks
is valuable in helping make sense of one part of the class-
room system there are many other factors that will influence
how effectively those artifacts can mediate the learning of sci-
ence. If the norms of the classroom and the responsibilities
of the actors in the classroom community are different, likely
seen in the implementation of the active learning tasks, then
activity theory suggests that these differences will impact the
effect that a given mediational artifact can have on student
success. The goal of our larger work is to look at the interac-
tions between the characteristics of the mediational artifacts
and other components of our Activity of Learning Science sys-
tem and how they connect to impact student success.
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